October 12, 2021 Volume 17 Issue 38
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

F-35 Lighting jet fighters: Drone-mounted inspection advances metrology at mach speed

Any deviations in external dimensions of the U.S. Air Force version of the F-35 Lightning II can interfere with stealth capabilities, and at supersonic speeds, prove catastrophic to both plane and pilot.

 

 

 

 

Moving to aerial digital inspection will enable Lockheed Martin to accurately and safely improve the manufacturing metrology of the F-35.

The F-35 Lightning II is an all-weather stealth combat aircraft that is intended to perform warfare strike missions and electronic surveillance capabilities at speeds up to Mach 1.6. Composites comprise 35% of the airframe weight, with the majority being bismaleimide, as well as some carbon nanotube-reinforced epoxy -- which has a tensile strength approximately 100 times greater than steel. Any deviations in external dimensions can interfere with stealth capabilities, and at supersonic speeds, prove catastrophic to both plane and pilot.

Therefore, it is critical that the "as built" metrology is confirmed as "near perfect" to the design. Currently, inspection is done by hand at Lockheed Martin's production facility in Fort Worth, TX. Gantries are assembled above the craft, and workers use handheld scanners extended at arm's length. This manual process introduces variables and also puts workers at risk as they attempt to straddle the smooth contoured surfaces of the aircraft.

Metrology and delamination inspection is currently done by hand at Lockheed Martin's production facility in Fort Worth, TX.

 

 

In an attempt to generate faster results while increasing accuracy and safety for all involved -- factory worker, customer, and user -- the transition to digital inspection is required.

"There needs to be a bold first adopter of aerial digital inspection in the industry, and Lockheed Martin hopes to fulfill that role with this use case," says Chris Colaw, Lockheed Fellow, Quality & Mission Success. "This is important in the quality space, because it helps us peel away the reliance on so much human involvement."

Measuring Lightning
Many devices currently allow for digital measurement of assemblies on a small level. However, the problem is how to scale up existing commercial equipment to inspect large, completely constructed projects, such as a large-body aircraft, ships, and even submarines, while still holding to tight tolerances.

"For 100 years in aviation, we have been using humans for quality assurance, but roughly 75% of my costs come from inspection, and 66% of that requires humans to perform, which involves some degree of subjectivity," notes Colaw. "But in our digital future, we need to embrace things in a different way."

The manual inspection process of the F-35 introduces variables and also puts workers at risk as they attempt work around -- and sometimes straddle -- the smooth contoured surfaces of the aircraft.

 

 

Lockheed Martin sought to find an automated metrology solution to confirm and document measurements to the tightest tolerances in a faster, more accurate, and more repeatable process.

"We were doing our own research on what a digital future would look like, but we opted to work with CAD/CAM [Services] since they presented an opportunity to partner with a scanner company and the University of Texas on drone control," says Colaw. "That saved us from having to do all the work on our own. The collaboration was a natural fit."

In spring 2021, CAD/CAM Services won a Small Business Technology Transfer Research (STTR) award to solve surface metrology issues for the F-35 fighter jet. Its job was to assemble a team of industry-leading suppliers that would deliver to Lockheed Martin a drone-mounted scanner that can accurately measure large assemblies (to +/- 0.025 mm) and transmit that data to a system that ultimately creates CAD files for first article inspection or maintenance purposes.

The company, based in Texas, has provided 3D modeling and CAD conversion services worldwide since 1988. Its customers include Boeing, Litton-Ingalls Shipbuilding, and the U.S. Navy and Air Force.

"We are taking various commercial, off-the-shelf components, slightly modifying them, and tying it all together to create a new system to solve a problem that is needed by industry," says Scott Shuppert, CEO of CAD/CAM Services.

Integrating the elements
The synergistic result started with a scanner-outfitted drone and camera inspection software, which had to actively search for issues such as dents, cracks, deformations, corrosion, and alignment issues, and then reconcile the measured results to the design model.

"Our team decided we needed to have both a drone and a robot to inspect on the assembly line," says Shuppert. "The drones will fly above and around the craft, while the wheel-mounted robot will work underneath the plane. For the drones, we went with Airgility, because they had most of what we were looking for."

Lockheed Martin will be the first adopter of aerial digital inspection in the aerospace industry with the utilization of drones to inspect the F-35.

 

 

Based in College Park, MD, Airgility, Inc. specializes in integrating AI and autonomy into their unmanned aerial vehicles (UAV). Their drones met the requirements for maneuverability (continuously adjustable tilt motors), control accuracy (ability to hold a flight path to +/- 6 mm), compliance (NDAA and TAA), and carrying capacity.

The guidance and control (G&C) system utilizes a multi-loop architecture that computes the error between a desired reference position and the current drone position, and then synthesizes the desired 3-axis movements of the rotors at an 80-Hz sampling rate. This allows the drone to operate without the benefit of global positioning satellites.

"Since GPS signals can't penetrate a heavily built aircraft hangar, the drone has to rely on the internal G&C system," says Pramod Raheja, CEO and co-founder of Airgility. "This system regulates the angular orientation of the drone via an independent thrust vectoring system so it can follow a 3D reference trajectory based on the physical dimensions of the aircraft."

Raheja says situational awareness is achieved by an algorithm that incorporates data from numerous redundant sensors. This allows the craft to fly in narrow spaces, like over and under a gantry or aircraft wing. Also included in the intelligence is a self-contained on-onboard AI fail-safe mechanism, so if the software crashes for any reason the drone will simply back away, avoid any obstacles, and land itself.

Collision avoidance is extremely important, since in addition to the aircraft itself, the Lockheed Martin factory floor presents numerous physical obstacles including scaffolding, pilot ladders, auxiliary power units, tails, canopies, and people.

"Before we let a drone fly next to an $80 million jet, we wanted to test it within a lab environment," says Lockheed Martin's Colaw.

CAD/CAM Services' mission was to deliver to Lockheed Martin a drone-mounted scanner that can accurately measure large assemblies (to +/- 0.025 mm) and transmit that data to a system that ultimately creates CAD files for first article inspection or maintenance purposes.

 

 

 

 

This is where Animesh Chakravarthy, Ph.D., Professor of Mechanical and Aerospace Engineering and Flight Control at the University of Texas at Arlington, was brought in. Chakravarthy's research in collision avoidance has been recognized by his receiving a prestigious CAREER award from the National Science Foundation (NSF).

"The goal is to have the drone performing multiple precise orbits around the aircraft, at just the right speed, while at the same time ensuring that the scanner is properly oriented towards the aircraft," explains Chakravarthy. "The trick is not getting so close as to cause a collision, but not so far away as to distort the readings."

Chakravarthy's advanced students will develop the mechanical robot that carries the scanner under the plane along the plant floor. It will be equipped with its own G&C system -- conceptually similar to that of the drone -- that will autonomously track the reference trajectory while ensuring collision avoidance.

"Sometimes, drone technology gets a lot of attention because it is neat and intriguing, but there has to be a business value behind it," says Colaw. "Using drones and this type of scanning technology really opens the door to better understand our product and to cost-effectively substantiate the quality of our products in a way that we can't currently do because we are limited by human bandwidth."

Expanding the capability of drone-integrated metrology
The current STTR award includes options for even further advancements. Of great importance to Lockheed Martin is identifying any delamination within the composite skin of the F-35. Since separation of the layers and voids cannot always be seen or measured from the surface, a non-destructive testing method is necessary.

Small drones from Airgility will help inspect F-35s (like the ones shown here) when they are being manufactured. Airgility drones can fly indoors without using GPS; instead, they use higher-level autonomy and artificial intelligence (AI).

 

 

 

 

This is where highly sensitive IR cameras can be used to inspect beneath the composite surface of the craft to effectively visualize and identify any anomalies.

"The IR flash lamps act as an excitation source to transfer heat through the material," says Desmond Lamont, Global Business Development Manager for Teledyne FLIR. "Since voids and gaps don't transfer heat as efficiently as a solid does, the heat will build and the camera identifies these hot spots and points out the adjacent fault areas."

Cutting the cord
The team has encountered a number of challenges so far, with the issue of removing the wiring tether from the scanner considered to be one of the most significant. A wireless approach is much safer and more capable of dodging personnel and physical infrastructure on the factory floor.

The Airgility team will solve this problem by utilizing AI drones that only transmit crucial data, thus greatly reducing bandwidth.

"Since the intelligent drone knows what anomalies to look for, it only sends that info and ignores the expected results," points out Raheja. "Therefore, you don't need to transmit a lot of data continuously."

The ultimate result of this collaboration is a reliable, highly accurate inspection platform for large-body craft that removes human error and safety risk from the manufacturing environment.

"With the F-35, there certainly is a use case to employ this technology where it has a successful chance of entry," says Colaw. "The idea is to scale it across the other Lockheed Martin business units, and then become a major proponent for using this technology in other applicable industries.

Source: CAD/CAM Services

Published October 2021

Rate this article

[F-35 Lighting jet fighters: Drone-mounted inspection advances metrology at mach speed]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy